skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Geng, Nisha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Interest in Na-S compounds stems from their use in battery materials at 1 atm, as well as the potential for superconductivity under pressure. Evolutionary structure searches coupled with Density Functional Theory calculations were employed to predict stable and low-lying metastable phases of sodium poor and sodium rich sulfides at 1 atm and within 100–200 GPa. At ambient pressures, four new stable or metastable phases with unbranched sulfur motifs were predicted: Na2S3 with C 2 / c and Imm2 symmetry, C 2 -Na2S5 and C 2 -Na2S8. Van der Waals interactions were shown to affect the energy ordering of various polymorphs. At high pressure, several novel phases that contained a wide variety of zero-, one-, and two-dimensional sulfur motifs were predicted, and their electronic structures and bonding were analyzed. At 200 GPa, P 4 / m m m -Na2S8 was predicted to become superconducting below 15.5 K, which is close to results previously obtained for the β -Po phase of elemental sulfur. The structures of the most stable M3S and M4S, M = Na, phases differed from those previously reported for compounds with M = H, Li, K. 
    more » « less